A Real-Time Algorithm to Identify Convective Precipitation Adjacent to or within the Bright Band in the Radar Scan Domain

Author:

Zhang Zhe12,Qi Youcun12,Li Donghuan12,Zhu Ziwei12,Yang Meilin3,Wang Nan4,Yang Yin5,Hu Qiyuan4

Affiliation:

1. a Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China

2. b University of Chinese Academy of Sciences, Beijing, China

3. c Institute of Urban Meteorology, China Meteorological Administration, Beijing, China

4. d Shaanxi Meteorological Bureau, Xi’an, Shaanxi, China

5. e National Meteorological Centre, Beijing, China

Abstract

AbstractHydrological hazards usually occur after heavy precipitation, especially during strong convection. Therefore, accurately identifying convective precipitation is very helpful for hydrological warning and forecasting. However, separating the convective, bright band (BB), and stratiform precipitation is found to be challenging when the convection is adjacent to or within the BB region. A new convection/BB/stratiform precipitation segregation algorithm is proposed in this study to resolve this challenging issue. This algorithm is applicable for a single radar volume scan data in native (polar) coordinates and consists of four processes: 1) check the freezing (0°C) level to roughly assess whether convection is occurring or not; 2) identify the convective cores through analyzing composite reflectivity (maximum reflectivity for a given range gate among all the sweeps), vertically integrated liquid water (VIL), VIL horizontal gradient, and reflectivity at the levels of 0°, −10°, and above −10°C; 3) delineate the whole convective region through the seeded region growing method by taking account of the microphysical differences between the BB and convective regions; and 4) delineate BB features in the stratiform region. The proposed algorithm utilizes the physical characteristics of different precipitation types for precisely segregating the convective, BB, and stratiform precipitation. This algorithm has been tested with radar data of different precipitation events and evaluated with three months of rain gauge data. The results show that the proposed algorithm performs consistently well for challenging precipitation events with the convection adjacent to or within a strong BB. Furthermore, the proposed algorithm could be used to improve the vertical profile of reflectivity (VPR) correction and reduce the overestimation of rainfall in the BB precipitation region.

Funder

National Key Research and Development Project

Strategic Priority Research Program of Chinese Academy of Sciences

Hundred Talent Program

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3