On the Value of River Network Information in Regional Frequency Analysis

Author:

Jung Kichul1,Ouarda Taha B. M. J.2,Marpu Prashanth R.3

Affiliation:

1. a Department of Civil and Environmental Engineering, Konkuk University, Gwanjin-gu, Seoul, South Korea

2. b Canada Research Chair in Statistical Hydro-Climatology, INRS-ETE, Quebec, Quebec, Canada

3. c Department of Electrical Engineering and Computer Science, Khalifa University, Masdar City, Abu Dhabi, United Arab Emirates

Abstract

AbstractRegional frequency analysis (RFA) is widely used in the design of hydraulic structures at locations where streamflow records are not available. RFA estimates depend on the precise delineation of homogenous regions for accurate information transfer. This study proposes new physiographical variables based on river network features and tests their potential to improve the accuracy of hydrological feature estimates. Information about river network types is used both in the definition of homogenous regions and in the estimation process. Data from 105 river basins in arid and semiarid regions of the United States were used in our analysis. Artificial neural network ensemble models and canonical correlation analysis were used to produce flood quantile estimates, which were validated through tenfold cross and jackknife validations. We conducted analysis for model performance based on statistical indices, such as the Nash–Sutcliffe efficiency, root-mean-square error, relative root-mean-square error, mean absolute error, and relative mean bias. Among various combinations of variables, a model with 10 variables produced the best performance. Further, 49, 36, and 20 river networks in the 105 basins were classified as dendritic, pinnate, and trellis networks, respectively. The model with river network classification for the homogenous regions appeared to provide a superior performance compared with a model without such classification. The results indicated that including our proposed combination of variables could improve the accuracy of RFA flood estimates with the classification of the network types. This finding has considerable implications for hydraulic structure design.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3