Vegetation restoration projects intensify intraregional water recycling processes in the agro-pastoral ecotone of Northern China

Author:

Wang Xuejin1,Zhang Baoqing1,Li Feng1,Li Xiang1,Li Xuliang1,Wang Yibo1,Shao Rui1,Tian Jie1,He Chansheng12

Affiliation:

1. a Key Laboratory of West China’s Environmental System (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu 730000, China

2. b Department of Geography, Western Michigan University, Kalamazoo, MI 49008, USA

Abstract

AbstractFrom 1998 to the present, the Chinese government has implemented numerous large-scale ecological programs to restore ecosystems and improve environmental protection in the agro-pastoral ecotone of Northern China (APENC). However, it remains unclear how vegetation restoration modulates intraregional moisture cycles and changes regional water balance. To fill this gap, we first investigated the variation in precipitation (P) from the China Meteorological Forcing Dataset and evapotranspiration (ET) estimated using the Priestly-Taylor Jet Propulsion Laboratory model under two scenarios: dynamic vegetation (DV) and no dynamic vegetation (no-DV). We then used the dynamic recycling model to analyze the changes in precipitation recycling ratio (PRR). Finally, we examined how vegetation restoration modulates intraregional moisture recycling to change the regional water cycle in APENC. Results indicate P increased at an average rate of 4.42 mm yr-2 from 1995 to 2015. ET with DV exhibited a significant increase at a rate of 1.57, 3.58, 1.53, and 1.84 mm yr-2 in the four subregions, respectively, compared with no-DV, and the annual mean PRR values were 10.15%, 9.30%, 11.01%, and 12.76% in the four subregions, and significant increasing trends were found in the APENC during 1995-2015. Further analysis of regional moisture recycling shows that vegetation restoration does not increase local P directly, but has an indirect effect by enhancing moisture recycling process to produce more P by increasing PRR. Our findings show that large-scale ecological restoration programs have a positive effect on local moisture cycle and precipitation.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3