Surface Flux Equilibrium Estimates of Evapotranspiration at Large Spatial Scales

Author:

Chen Shiliu12,McColl Kaighin A.13,Berg Alexis1,Huang Yuefei24

Affiliation:

1. a Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts

2. b State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, China

3. c School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts

4. d State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Qinghai, China

Abstract

AbstractA recent theory proposes that inland continental regions are in a state of surface flux equilibrium (SFE), in which tight coupling between the land and atmosphere allow estimation of the Bowen ratio at daily to monthly time scales solely from atmospheric measurements, without calibration, even when the land surface strongly constrains the surface energy budget. However, since the theory has only been evaluated at quasi-point spatial scales using eddy covariance measurements with limited global coverage, it is unclear if it is applicable to the larger spatial scales relevant to studies of global climate. In this study, SFE estimates of the Bowen ratio are combined with satellite observations of surface net radiation to obtain large-scale estimates of latent heat flux λE. When evaluated against multiyear mean annual λE obtained from catchment water balance estimates from 221 catchments across the United States, the resulting error statistics are comparable to those in the catchment water balance estimates themselves. The theory is then used to diagnostically estimate λE using historical simulations from 26 CMIP6 models. The resulting SFE estimates are typically at least as accurate as the CMIP6 model’s simulated λE, when compared with catchment water balance estimates. Globally, there is broad spatial and temporal agreement between CMIP6 model SFE estimates and the CMIP6 model’s simulated λE, although SFE likely overestimates λE in some arid regions. We conclude that SFE applies reasonably at large spatial scales relevant to climate studies, and is broadly reproduced in climate models.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3