Variability of the Kuroshio Extension Jet, Recirculation Gyre, and Mesoscale Eddies on Decadal Time Scales

Author:

Qiu Bo1,Chen Shuiming1

Affiliation:

1. Department of Oceanography, University of Hawaii at Manoa, Honolulu, Hawaii

Abstract

Abstract Twelve years of sea surface height (SSH) data from multiple satellite altimeters are used to investigate the low-frequency changes and the interconnections of the Kuroshio Extension (KE) jet, its southern recirculation gyre, and their mesoscale eddy field. The dominant signal is characterized by the steady weakening of the KE jet/recirculation gyre from 1993 to 1996, followed by a gradual strengthening after 1997. During the weakening period of 1993–96, the KE path migrated southward in general, and this path migration reversed in direction during the strengthening period of the KE jet and recirculation gyre after 1997. By hindcasting the SSH signals using linear vorticity dynamics, it was found that weakening (strengthening) in the KE jet and recirculation gyre is consistent with westward propagation of negative (positive) SSH anomalies generating in the eastern North Pacific and strengthening during their westward propagation. When the KE jet and recirculation gyre were in a weak mode during 1996–2001, the regional eddy kinetic energy level was observed to be higher than when the jet and recirculation gyre were in a strong mode. This negative correlation between the mean flow intensity and the level of regional eddy kinetic energy is found in both the SSH data and the linear vorticity model to result from the migration of the KE jet inflow over the Izu–Ogasawara Ridge. When it is forced southward by the impinging negative SSH anomalies, the KE jet inflow rides over the ridge through a shallow segment, leading to large-amplitude downstream meanders. Impinging of positive SSH anomalies, on the other hand, strengthens the recirculation gyre and forces the inflow northward where it passes through a deep channel, minimizing the path perturbations in the downstream region.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 440 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3