Intercomparison Study of Cloud-to-Ground Lightning Flashes Observed by KARITLDS and KLDN at South Korea

Author:

Kuk Bong-Jae1,Kim Hong-Il1,Ha Jong-Sung1,Lee Hyo-Keun1

Affiliation:

1. Launch Operation Department, Naro Space Center, Korea Aerospace Research Institute, Goheung, South Korea

Abstract

Abstract Concern regarding lightning activity as a precursor of severe weather is increasing. Atmospheric electricity, including lightning phenomena, is one of most serious threats to successful space launch operations. The objective of this study was to evaluate the performance of two different lightning detection networks using a time–range correlation method. Understanding lightning detection network performance enables the weather forecaster to support decisions made regarding space launch operations. The relative detection efficiency (ReDE), observation ratio, ellipse area for 50% probability of location, number of sensors reporting (NSR), time difference, and distance, as parameters that predict system performance, were calculated with the time-range correlation method using cloud-to-ground (CG) flash data from the Korea Aerospace Research Institute Total Lightning Detection System (KARITLDS) and from the Korean Meteorology Administration Lightning Detection Network (KLDN). In this study, 15 thunderstorms were selected from 2008–09 data. A total of 41 192 and 28 976 CG flashes were recorded by KARITLDS and KLDN, respectively. In all, 19 044 CG flashes were correlated as being the same flash. The observation ratios, ReDEKARITLDS, and ReDEKLDN were calculated as 1.42, 0.66, and 0.46, respectively. Eighty percent of CG flashes detected by the KARITLDS (KLDN) had elliptical areas less than 5 km2 (12 km2), where the elliptical areas were defined as having a 50% probability of containing the CG flash. Two regions showing a high observation ratio were due to high KARITLDS detection efficiency and to the blocking of electromagnetic wave propagation by Mount Hanla at 1950 m above sea level.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference21 articles.

1. On the relationship between lightning detection network performance and measured lightning parameters.;Cummins,2004

2. A combined TOA/MDF technology upgrade of the U.S. National Lightning Detection Network.;Cummins;J. Geophys. Res.,1998

3. Detailed brightness versus lightning current amplitude correlation of flashes to the Gaisberg tower.;Diendorfer,2002

4. Comparison of a SAFIR lightning detection network in northern Germany to the operational BLIDS network.;Drue;J. Geophys. Res.,2007

5. Cloud-to-ground lightning activity in relation to the radar-derived hail kinetic energy in Switzerland.;Hohl;Atmos. Res.,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3