Improved Estimates of the European Winter Windstorm Climate and the Risk of Reinsurance Loss Using Climate Model Data

Author:

Della-Marta Paul M.1,Liniger Mark A.1,Appenzeller Christof1,Bresch David N.2,Köllner-Heck Pamela3,Muccione Veruska4

Affiliation:

1. Federal Office for Meteorology and Climatology, MeteoSwiss, Zurich, Switzerland

2. Swiss Reinsurance Company, Zurich, Switzerland

3. Swiss Reinsurance Company, Zurich, and Federal Office for the Environment, Bern, Switzerland

4. Swiss Reinsurance Company, and Myclimate, Zurich, Switzerland

Abstract

Abstract Current estimates of the European windstorm climate and their associated losses are often hampered by either relatively short, coarse resolution or inhomogeneous datasets. This study tries to overcome some of these shortcomings by estimating the European windstorm climate using dynamical seasonal-to-decadal (s2d) climate forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF). The current s2d models have limited predictive skill of European storminess, making the ensemble forecasts ergodic samples on which to build pseudoclimates of 310–396 yr in length. Extended winter (October–April) windstorm climatologies are created using scalar extreme wind indices considering only data above a high threshold. The method identifies up to 2363 windstorms in s2d data and up to 380 windstorms in the 40-yr ECMWF Re-Analysis (ERA-40). Classical extreme value analysis (EVA) techniques are used to determine the windstorm climatologies. Differences between the ERA-40 and s2d windstorm climatologies require the application of calibration techniques to result in meaningful comparisons. Using a combined dynamical–statistical sampling technique, the largest influence on ERA-40 return period (RP) uncertainties is the sampling variability associated with only 45 seasons of storms. However, both maximum likelihood (ML) and L-moments (LM) methods of fitting a generalized Pareto distribution result in biased parameters and biased RP at sample sizes typically obtained from 45 seasons of reanalysis data. The authors correct the bias in the ML and LM methods and find that the ML-based ERA-40 climatology overestimates the RP of windstorms with RPs between 10 and 300 yr and underestimates the RP of windstorms with RPs greater than 300 yr. A 50-yr event in ERA-40 is approximately a 40-yr event after bias correction. Biases in the LM method result in higher RPs after bias correction although they are small when compared with those of the ML method. The climatologies are linked to the Swiss Reinsurance Company (Swiss Re) European windstorm loss model. New estimates of the risk of loss are compared with those from historical and stochastically generated windstorm fields used by Swiss Re. The resulting loss-frequency relationship matches well with the two independently modeled estimates and clearly demonstrates the added value by using alternative data and methods, as proposed in this study, to estimate the RP of high RP losses.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference50 articles.

1. Overview of seasonal forecasting.;Anderson,2008

2. Comparison of the ECMWF seasonal forecast systems 1 and 2, including the relative performance for the 1997/8 El Niño.;Anderson,2003

3. Development of the ECMWF seasonal forecast system 3.;Anderson,2007

4. Extreme value distributions in chaotic dynamics.;Balakrishnan;J. Stat. Phys.,1995

5. Storm tracks and climate change.;Bengtsson;J. Climate,2006

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3