Investigating the Influence of Carbon Dioxide and the Stratosphere on the Long-Term Tropospheric Temperature Monitoring from HIRS

Author:

Chung Eui-Seok1,Soden Brian J.1

Affiliation:

1. Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Abstract

Abstract Contrary to a midtropospheric warming trend detected from Microwave Sounding Unit (MSU) measurements, High-Resolution Infrared Radiation Sounder (HIRS) temperature (15 μm) channels, sensitive to the thermal emission from the troposphere, produce distinct cooling trends for the period 1980–99. This apparent discrepancy in the tropospheric temperature trend is investigated through radiative transfer simulations using Geophysical Fluid Dynamics Laboratory climate model output and the profiles of the standard model atmospheres. Radiative simulations with time-invariant carbon dioxide concentration throughout the entire analysis period produce trends that are qualitatively similar to that obtained from the MSU observations, implying that the observed cooling trends of the HIRS temperature channels are attributable to increased carbon dioxide concentration over the 20-yr period. Additional simulations with the observed time-varying concentration of carbon dioxide confirm this basic result. Whereas temperature fluctuations dominate variability on monthly to interannual time scales, carbon dioxide changes dominate the decadal trends in both the observations and model simulations. Further simulations examined the sensitivity of the brightness temperature change with respect to the changes in tropospheric and stratospheric temperature. These calculations indicate that the influences of stratospheric temperature on the measured radiances are greater for the HIRS temperature channels relative to the MSU midtropospheric channel. These results highlight the contributions of time-varying carbon dioxide concentrations and stratospheric temperature to the HIRS 15-μm (temperature channel) radiance record and underscore the importance of accurately accounting for these changes when using HIRS measurements for long-term monitoring.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3