Pattern-Based Evaluation of Coupled Meteorological and Air Quality Models

Author:

Beaver Scott1,Tanrikulu Saffet1,Palazoglu Ahmet2,Singh Angadh2,Soong Su-Tzai1,Jia Yiqin1,Tran Cuong1,Ainslie Bruce3,Steyn Douw G.3

Affiliation:

1. Bay Area Air Quality Management District, San Francisco, California

2. University of California, Davis, Davis, California

3. The University of British Columbia, Vancouver, British Columbia, Canada

Abstract

AbstractA novel pattern-based model evaluation technique is proposed and demonstrated for air quality models (AQMs) driven by meteorological model (MM) output. The evaluation technique is applied directly to the MM output; however, it is ultimately used to gauge the performance of the driven AQM. This evaluation of AQM performance based on MM performance is a major advance over traditional evaluation methods. First, meteorological cluster analysis is used to assign the days of a historical measurement period among a small number of weather patterns having distinct air quality characteristics. The clustering algorithm groups days sharing similar empirical orthogonal function (EOF) representations of their measurements. In this study, EOF analysis is used to extract space–time patterns in the surface wind field reflecting both synoptic and mesoscale influences. Second, simulated wind fields are classified among the determined weather patterns using the measurement-derived EOFs. For a given period, the level of agreement between the observation-based clustering labels and the simulation-based classification labels is used to assess the validity of the simulation results. Mismatches occurring between the two sets of labels for a given period imply inaccurately simulated conditions. Moreover, the specific nature of a mismatch can help to diagnose the downstream effects of improperly simulated meteorological fields on AQM performance. This pattern-based model evaluation technique was applied to extended simulations of fine particulate matter (PM2.5) covering two winter seasons for the San Francisco Bay Area of California.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3