Climatological Conditions of Lake-Effect Precipitation Events Associated with the New York State Finger Lakes

Author:

Laird Neil1,Sobash Ryan2,Hodas Natasha3

Affiliation:

1. Department of Geoscience, Hobart and William Smith Colleges, Geneva, New York

2. School of Meteorology, University of Oklahoma, Norman, Oklahoma

3. Department of Environmental Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey

Abstract

Abstract A climatological analysis was conducted of the environmental and atmospheric conditions that occurred during 125 identified lake-effect (LE) precipitation events in the New York State Finger Lakes region for the 11 winters (October–March) from 1995/96 through 2005/06. The results complement findings from an earlier study reporting on the frequency and temporal characteristics of Finger Lakes LE events that occurred as 1) isolated precipitation bands over and downwind of a lake (NYSFL events), 2) an enhancement of LE precipitation originating from Lake Ontario (LOenh events), 3) an LE precipitation band embedded within widespread synoptic precipitation (SYNOP events), or 4) a transition from one type to another. In comparison with SYNOP and LOenh events, NYSFL events developed with the 1) coldest temperatures, 2) largest lake–air temperature differences, 3) weakest wind speeds, 4) highest sea level pressure, and 5) lowest height of the stable-layer base. Several significant differences in conditions were found when only one or both of Cayuga and Seneca Lakes, the largest Finger Lakes, had LE precipitation as compared with when the smaller Finger Lakes also produced LE precipitation. In addition, transitional events containing an NYSFL time period occurred in association with significantly colder and drier air masses, larger lake–air temperature differences, and a less stable and shallower boundary layer in comparison with those associated with solitary NYSFL events.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3