The Measurement Factors in Estimating Snowfall Derived from Snow Cover Surfaces Using Acoustic Snow Depth Sensors

Author:

Fischer Alexandre P.1

Affiliation:

1. Observing Systems and Engineering, Weather and Environmental Monitoring, Environment Canada, Toronto, Ontario, Canada

Abstract

Abstract At three Canadian test locations during the cold seasons of 2006 and 2007/08, snowfall measurements are derived from changes in the total depth of snow on the ground using multiple Campbell Scientific, Inc., SR50 ultrasonic ranging sensors over very short (minute–hour) time scales. Data analysis reveals that, because of the interplay of numerous essential factors that influence snow cover levels, the measurements exhibit a strong dependence on the time interval between consecutive measurements used to generate the snowfall value. This finding brings into question the reasonable accuracy of snowfall measurements that are derived from the snow cover surface using automated methods over very short time scales. In this study, two mathematical methods are developed to assist in quantifying the magnitude of the snowfall measurement error. From time-series analysis, the suggested characteristics of the snowdrift signal in the snow depth time series is shown by using measurements taken by FlowCapt Snowdrift acoustic sensors. Furthermore, the use of three collocated SR50s shows that repeated snow depth measurements represent three pairwise essentially different time series. These results question the reasonable accuracy of snowfall measurements derived using only a single ultrasonic ranging sensor, especially in cases in which the snow cover is redistributed by the wind and in which snow depth spatial variability is prominent.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference56 articles.

1. Analysis and estimation of snowpack properties using CLPX data.;Azar,2008

2. Calculation of official USCRN Precipitation from GEONOR weighing precipitation gauge.;Baker,2005

3. A physical SNOWPACK model for avalanche warning: Part I. Numerical model.;Bartelt;Cold Reg. Sci. Technol.,2002

4. Scaling issues in snow hydrology.;Blöschl;Hydrol. Processes,1999

5. A biophysical surface energy budget analysis of soil temperature in the boreal forests of interior Alaska.;Bonan;Water Resour. Res.,1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3