Application of Dual-Polarization Radar Melting-Layer Detection Algorithm

Author:

Boodoo S.1,Hudak D.1,Donaldson N.1,Leduc M.1

Affiliation:

1. Cloud Physics and Severe Weather Research Section, Environment Canada, Toronto, Ontario, Canada

Abstract

Abstract A polarimetric melting-layer detection algorithm developed for an S-band radar has been modified for use by the King City C-band radar in southern Ontario, Canada. The technique ingests radar scan volume data to determine the melting-layer top and bottom and to diagnose temporal and spatial variations of the melting-layer heights. The thickness of the melting layer is also derived from the algorithm. Detailed case studies of two frontal systems over this region are described, comparing the radar-derived melting-layer height with aircraft measurement of the height of the 0°C isotherm. The analysis demonstrated the ability to detect rapidly changing melting-layer heights during frontal passages in the region. A range of melting-layer heights for a 3-yr period was investigated and produced detections from close to the ground up to about 5.0 km. Comparison of algorithm results to output from a numerical weather prediction model over the 3-yr period showed good agreement. The correlation coefficient of the heights of the 0°C wet-bulb temperature with the radar-derived melting-layer tops was 0.96. The time series of the algorithm output was used to detect frontal passages and showed that the algorithm should be useful for approximately 19 frontal passages per year in this region.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference20 articles.

1. Identification of the melting layer through dual-polarization radar measurements at vertical incidence.;Baldini;J. Atmos. Oceanic Technol.,2006

2. Operational detection of “near-surface” rain-snow boundaries.;Bellon,2007

3. Usefulness of bright band climatology in south central Canada.;Boodoo,2006

4. Observations of the melting layer in southern Canada with a C-band dual polarized radar.;Boodoo,2008

5. Freezing-level estimation with polarimetric radar.;Brandes;J. Appl. Meteor.,2004

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3