Planning for an Uncertain Future: Climate Change Sensitivity Assessment toward Adaptation Planning for Public Water Supply

Author:

Bardsley Tim1,Wood Andrew2,Hobbins Mike3,Kirkham Tracie4,Briefer Laura4,Niermeyer Jeff4,Burian Steven5

Affiliation:

1. Western Water Assessment, Salt Lake City, Utah

2. National Center for Atmospheric Research, Boulder, Colorado

3. Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

4. Salt Lake City Department of Public Utilities, Salt Lake City, Utah

5. University of Utah, Salt Lake City, Utah

Abstract

Abstract Assessing climate change risk to municipal water supplies is often conducted by hydrologic modeling specific to local watersheds and infrastructure to ensure that outputs are compatible with existing planning frameworks and processes. This study leverages the modeling capacity of an operational National Weather Service River Forecast Center to explore the potential impacts of future climate-driven hydrologic changes on factors important to planning at the Salt Lake City Department of Public Utilities (SLC). Hydrologic modeling results for the study area align with prior research in showing that temperature changes alone will lead to earlier runoff and reduced runoff volume. The sensitivity of average annual flow to temperature varies significantly between watersheds, averaging −3.8% °F−1 and ranging from −1.8% to −6.5% flow reduction per degree Fahrenheit of warming. The largest flow reductions occur during the high water demand months of May–September. Precipitation drives hydrologic response more strongly than temperature, with each 1% precipitation change producing an average 1.9% runoff change of the same sign. This paper explores the consequences of climate change for the reliability of SLC's water supply system using scenarios that include hydrologic changes in average conditions, severe drought scenarios, and future water demand test cases. The most significant water management impacts will be earlier and reduced runoff volume, which threaten the system's ability to maintain adequate streamflow and storage to meet late-summer water demands.

Publisher

American Meteorological Society

Subject

General Earth and Planetary Sciences

Reference35 articles.

1. Potential impacts of a warming climate on water availability in snow-dominated regions;Barnett;Nature,2005

2. Bureau of Reclamation, 2011: SECURE Water Act section 9503(c): Reclamation Climate Change and Water 2011. Bureau of Reclamation Rep., 226 pp. [Available online at http://www.usbr.gov/climate/SECURE/docs/SECUREWaterReport.pdf.]

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3