Black Sea Mixed Layer Sensitivity to Various Wind and Thermal Forcing Products on Climatological Time Scales*

Author:

Kara A. Birol1,Hurlburt Harley E.1,Wallcraft Alan J.1,Bourassa Mark A.2

Affiliation:

1. Oceanography Division, Naval Research Laboratory, Stennis Space Center, Mississippi

2. Center for Ocean–Atmospheric Prediction Studies, Tallahassee, Florida

Abstract

Abstract This study describes atmospheric forcing parameters constructed from different global climatologies, applied to the Black Sea, and investigates the sensitivity of Hybrid Coordinate Ocean Model (HYCOM) simulations to these products. Significant discussion is devoted to construction of these parameters before using them in the eddy-resolving (≈3.2-km resolution) HYCOM simulations. The main goal is to answer how the model dynamics can be substantially affected by different atmospheric forcing products in the Black Sea. Eight wind forcing products are used: four obtained from observation-based climatologies, including one based on measurements from the SeaWinds scatterometer on the Quick Scatterometer (QuikSCAT) satellite, and the rest formed from operational model products. Thermal forcing parameters, including solar radiation, are formed from two operational models: the European Centre for Medium-Range Weather Forecasts (ECMWF) and the Fleet Numerical Meteorology and Oceanography Center (FNMOC) Navy Operational Global Atmospheric Prediction System (NOGAPS). Climatologically forced Black Sea HYCOM simulations (without ocean data assimilation) are then performed to assess the accuracy and sensitivity of the model sea surface temperature (SST) and sea surface circulation to these wind and thermal forcing products. Results demonstrate that the model-simulated SST structure is quite sensitive to the wind and thermal forcing products, especially near coastal regions. Despite this sensitivity, several robust features are found in the model SST in comparison to a monthly 9.3-km-resolution satellite-based Pathfinder SST climatology. Annual mean HYCOM SST usually agreed to within ≈±0.2° of the climatology in the interior of the Black Sea for any of the wind and thermal forcing products used. The fine-resolution (0.25° × 0.25°) wind forcing from the scatterometer data along with thermal forcing from NOGAPS gave the best SST simulation with a basin-averaged rms difference value of 1.21°C, especially improving model results near coastal regions. Specifically, atmospherically forced model simulations with no assimilation of any ocean data suggest that the basin-averaged rms SST differences with respect to the Pathfinder SST climatology can vary from 1.21° to 2.15°C depending on the wind and thermal forcing product. The latter rms SST difference value is obtained when using wind forcing from the National Centers for Environmental Prediction (NCEP), a product that has a too-coarse grid resolution of 1.875° × 1.875° for a small ocean basin such as the Black Sea. This paper also highlights the importance of using high-frequency (hybrid) wind forcing as opposed to monthly mean wind forcing in the model simulations. Finally, there are large variations in the annual mean surface circulation simulated using the different wind sets, with general agreement between those forced by the model-based products (vector correlation is usually >0.7). Three of the observation-based climatologies generally yield unrealistic circulation features and currents that are too weak.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference80 articles.

1. Analysis of velocity field in the eastern Black Sea from satellite data during the Black Sea ‘99 experiment.;Afanasyev;J. Geophys. Res.,2002

2. Interannual and seasonal variability of the Black Sea fresh water balance (in Russian).;Altman;Tr. Gos. Okeanogr. Inst.,1986

3. Altman, E. N., I. F.Gertman, and Z. A.Golubeva, 1987: Climatological fields of salinity and temperature in the Black Sea (in Russian). State Oceanography Institute Tech. Rep., 109 pp. [Available from the State Oceanography Institute, Sevastopol Branch, Sevastopol, Ukraine.].

4. An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates.;Bleck;Ocean Modell.,2002

5. SeaWinds validation with research vessels.;Bourassa;J. Geophys. Res.,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3