Initially Forced Long Planetary Waves in the Presence of Nonzonal Mean Flow

Author:

Cerovečki Ivana1,de Szoeke Roland A.1

Affiliation:

1. College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Abstract

Abstract The purpose of this paper is to understand how long planetary waves evolve when propagating in a subtropical gyre. The steady flow of a wind-driven vertically sheared model subtropical gyre is perturbed by Ekman pumping that is localized within a region of finite lateral extent and oscillates periodically at about the annual frequency after sudden initiation. Both the background flow and the infinitesimal perturbations are solutions of a 2½-layer model. The region of forcing is located in the eastern part of the gyre where the steady flow is confined to the uppermost layer (shadow zone). The lateral scales of the forcing and of the response are supposed to be small enough with respect to the overall gyre scale that the background flow may be idealized as horizontally uniform, yet large enough (greater than the baroclinic Rossby radii) that the long-wave approximation may be made. The latter approximation limits the length of time over which the solutions remain valid. The solutions consist of (i) a forced response oscillating at the forcing frequency in which both stable (real) and zonally growing (complex) meridional wavenumbers are excited plus (ii) a localized transient structure that grows as it propagates away from the region of forcing. Application of the method of stationary phase provides analytical solutions that permit clear separation of the directly forced part of the solution and the transient as well as estimation of the temporal growth rate of the transient, which proves to be convectively unstable. The solutions presented here are relevant to understanding the instability of periodic (including annual period) perturbations of oceanic subtropical gyres on scales larger than the baroclinic Rossby radii of deformation.

Publisher

American Meteorological Society

Subject

Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3