On the Sensitivity Equations of Four-Dimensional Variational (4D-Var) Data Assimilation

Author:

Daescu Dacian N.1

Affiliation:

1. Portland State University, Portland, Oregon

Abstract

Abstract The equations of the forecast sensitivity to observations and to the background estimate in a four-dimensional variational data assimilation system (4D-Var DAS) are derived from the first-order optimality condition in unconstrained minimization. Estimation of the impact of uncertainties in the specification of the error statistics is considered by evaluating the sensitivity to the observation and background error covariance matrices. The information provided by the error covariance sensitivity analysis is used to identify the input components for which improved estimates of the statistical properties of the errors are of most benefit to the analysis and forecast. A close relationship is established between the sensitivities within each input pair data/error covariance such that once the observation and background sensitivities are available the evaluation of the sensitivity to the specification of the corresponding error statistics requires little additional computational effort. The relevance of the 4D-Var sensitivity equations to assess the data impact in practical applications is discussed. Computational issues are addressed and idealized 4D-Var experiments are set up with a finite-volume shallow-water model to illustrate the theoretical concepts. Time-dependent observation sensitivity and potential applications to improve the model forecast are presented. Guidance provided by the sensitivity fields is used to adjust a 4D-Var DAS to achieve forecast error reduction through assimilation of supplementary data and through an accurate specification of a few of the background error variances.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference51 articles.

1. A comparative study of the performance of high-resolution advection schemes in the context of data assimilation.;Akella;Int. J. Numer. Methods Fluids,2006

2. Atmospheric observations and experiments to assess their usefulness in data assimilation.;Atlas;J. Meteor. Soc. Japan,1997

3. Baker, N. L. , 2000: Observation adjoint sensitivity and the adaptive observations targeting problem. Ph.D. thesis, Naval Postgraduate School, 238 pp.

4. Observation and background adjoint sensitivity in the adaptive observation-targeting problem.;Baker;Quart. J. Roy. Meteor. Soc.,2000

5. A study on the optimization of the deployment of targeted observations using adjoint-based methods.;Bergot;Quart. J. Roy. Meteor. Soc.,2002

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3