Comparison of Four Cloud Schemes in Simulating the Seasonal Mean Field Forced by the Observed Sea Surface Temperature

Author:

Shimpo Akihiko1,Kanamitsu Masao1,Iacobellis Sam F.1,Hong Song-You2

Affiliation:

1. Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

2. Global Environment Laboratory, Department of Atmospheric Sciences, Yonsei University, Seoul, South Korea

Abstract

Abstract The impacts of four stratiform cloud parameterizations on seasonal mean fields are investigated using the global version of the Experimental Climate Prediction Center (ECPC) global-to-regional forecast system (G-RSM). The simulated fields are compared with the International Satellite Cloud Climatology Project (ISCCP) data for clouds, the Global Precipitation Climatology Project data for precipitation, the Earth Radiation Budget Experiment and the Surface Radiation Budget data for radiation, and the National Centers for Environmental Prediction (NCEP)–Department of Energy (DOE) Atmospheric Model Intercomparison Project (AMIP-II) Reanalysis (R-2) for temperature. Compared to observations, no stratiform cloud parameterization performed better in simulating all aspects of clouds, temperature, precipitation, and radiation fluxes. There are strong interactions between parameterized stratiform clouds and boundary layer clouds and convection, resulting in changes in low-level cloudiness and precipitation in the simulations. When the simulations are compared with ISCCP cloudiness and cloud water, and the NCEP/DOE R-2 relative humidity, the cloud amounts simulated by all four cloud schemes depend mostly on relative humidity with less dependency on the model’s cloud water, while the observed cloud amount is more strongly dependent on cloud water than relative humidity, suggesting that cloud parameterizations and the simulation of cloud water require further improvement.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3