Assessing the Skill of an All-Season Statistical Forecast Model for the Madden–Julian Oscillation

Author:

Jiang Xianan1,Waliser Duane E.1,Wheeler Matthew C.2,Jones Charles3,Lee Myong-In4,Schubert Siegfried D.4

Affiliation:

1. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

2. Bureau of Meteorology Research Centre, Melbourne, Victoria, Australia

3. Institute for Computational Earth System Science, University of California, Santa Barbara, Santa Barbara, California

4. Global Model and Assimilation Office, NASA GSFC, Greenbelt, Maryland

Abstract

Abstract Motivated by an attempt to augment dynamical models in predicting the Madden–Julian oscillation (MJO), and to provide a realistic benchmark to those models, the predictive skill of a multivariate lag-regression statistical model has been comprehensively explored in the present study. The predictors of the benchmark model are the projection time series of the leading pair of EOFs of the combined fields of equatorially averaged outgoing longwave radiation (OLR) and zonal winds at 850 and 200 hPa, derived using the approach of Wheeler and Hendon. These multivariate EOFs serve as an effective filter for the MJO without the need for bandpass filtering, making the statistical forecast scheme feasible for the real-time use. Another advantage of this empirical approach lies in the consideration of the seasonal dependence of the regression parameters, making it applicable for forecasts all year-round. The forecast model exhibits useful extended-range skill for a real-time MJO forecast. Predictions with a correlation skill of greater than 0.3 (0.5) between predicted and observed unfiltered (EOF filtered) fields still can be detected over some regions at a lead time of 15 days, especially for boreal winter forecasts. This predictive skill is increased significantly when there are strong MJO signals at the initial forecast time. The analysis also shows that predictive skill for the upper-tropospheric winds is relatively higher than for the low-level winds and convection signals. Finally, the capability of this empirical model in predicting the MJO is further demonstrated by a case study of a real-time “hindcast” during the 2003/04 winter. Predictive skill demonstrated in this study provides an estimate of the predictability of the MJO and a benchmark for the dynamical extended-range models.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3