Using Singular Value Decomposition to Parameterize State-Dependent Model Errors

Author:

Danforth Christopher M.1,Kalnay Eugenia2

Affiliation:

1. Department of Mathematics and Statistics, University of Vermont, Burlington, Vermont

2. Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Abstract

Abstract The purpose of the present study is to use a new method of empirical model error correction, developed by Danforth et al. in 2007, based on estimating the systematic component of the nonperiodic errors linearly dependent on the anomalous state. The method uses singular value decomposition (SVD) to generate a basis of model errors and states. It requires only a time series of errors to estimate covariances and uses negligible additional computation during a forecast integration. As a result, it should be suitable for operational use at a relatively small computational expense. The method is tested with the Lorenz ’96 coupled system as the truth and an uncoupled version of the same system as a model. The authors demonstrate that the SVD method explains a significant component of the effect that the model’s unresolved state has on the resolved state and shows that the results are better than those obtained with Leith’s empirical correction operator. The improvement is attributed to the fact that the SVD truncation effectively reduces sampling errors. Forecast improvements of up to 1000% are seen when compared with the original model. The improvements come at the expense of weakening ensemble spread.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Filtering dynamical systems using observations of statistics;Chaos: An Interdisciplinary Journal of Nonlinear Science;2024-03-01

2. A Machine Learning and Data Assimilation forecasting framework for surface waves;Quarterly Journal of the Royal Meteorological Society;2023-12-09

3. Systematic diurnal bias of the CMA-MESO model in southern China: Characteristics and correction;Frontiers in Earth Science;2023-02-28

4. Application of Recurrent Neural Networks to Model Bias Correction: Idealized Experiments With the Lorenz‐96 Model;Journal of Advances in Modeling Earth Systems;2023-02

5. Robust data assimilation with noise: Applications to cardiac dynamics;Chaos: An Interdisciplinary Journal of Nonlinear Science;2021-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3