Observations of Convection Initiation “Failure” from the 12 June 2002 IHOP Deployment

Author:

Markowski Paul1,Hannon Christina1,Rasmussen Erik2

Affiliation:

1. Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

2. Cooperative Institute for Mesoscale Meteorological Studies, Norman, Oklahoma

Abstract

Abstract Observations of the development of cumulus convection, which reached depths of several kilometers but failed to develop into sustained, precipitating, cumulonimbus clouds—an event the authors term “convection initiation failure”—are presented from the 12 June 2002 International H2O Project (IHOP) case. The investigation relies heavily on remote and in situ data obtained by mobile, truck-borne Doppler radars, mobile mesonets, mobile soundings, and stereo cloud photogrammetry. Data collection was focused in northwestern Oklahoma near the intersection of an outflow boundary and dryline. Thunderstorms developed along the dryline during the late afternoon approximately 40 km east of the domain intensively observed by the ground-based observing systems. Farther west, within the region of dense observations analyzed herein, cumulus congestus clouds formed along an outflow boundary. Multiple-Doppler wind syntheses revealed that the boundary layer vertical velocity field was dominated by thermals rather than by circulations associated with the mesoscale boundaries. In spite of this observation, deep cumulus cloud development was confined to the mesoscale boundaries. Trajectories into the deep cumulus clouds that developed along the outflow boundary were much more vertical than those entering the shallow cumulus clouds observed away from the outflow boundary. It is hypothesized that the role of the outflow boundary in promoting deep cumulus cloud formation was to promote updrafts that were less susceptible to the dilution of equivalent potential temperature, which controls the potential buoyancy, vertical velocity, and depth that can be realized by the clouds. It is also hypothesized that the lack of a persistent, spatially continuous corridor of mesoscale ascent along the outflow boundary and associated moisture upwelling contributed to convection initiation failure along the outflow boundary.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference72 articles.

1. Arnott, N., Y.Richardson, J.Wurman, and J.Lutz, 2003: A solar calibration technique for determining mobile radar pointing angles. Preprints, 31st Int. Conf. on Radar Meteorology, Seattle, WA, Amer. Meteor. Soc., 492–494.

2. Arnott, N., Y.Richardson, and J.Wurman, 2004: High-resolution observations of a cold front on 10 June 2002. Preprints, 22d Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., CD-ROM, 16A.3.

3. Observations of the sea-breeze front during CaPE. Part II: Dual-Doppler and aircraft analysis.;Atkins;Mon. Wea. Rev,1995

4. A technique for maximizing details in numerical weather map analysis.;Barnes;J. Appl. Meteor,1964

5. Biggerstaff, M. I., and J.Guynes, 2000: A new tool for atmospheric research. Preprints, 20th Conf. on Severe Local Storms, Orlando, FL, Amer. Meteor. Soc., 277–280.

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3