Regional Heat Sources and the Active and Break Phases of Boreal Summer Intraseasonal (30–50 Day) Variability*

Author:

Annamalai H.1,Sperber K. R.2

Affiliation:

1. International Pacific Research Center, University of Hawaii at Manoa, Honolulu, Hawaii

2. PCMDI, Lawrence Livermore National Laboratory, Livermore, California

Abstract

Abstract The boreal summer intraseasonal variability (BSISV) associated with the 30–50-day mode is represented by the coexistence of three components: poleward propagation of convection over the Indian and tropical west Pacific longitudes and eastward propagation along the equator. The hypothesis that the three components influence each other has been investigated using observed outgoing longwave radiation (OLR), NCEP–NCAR reanalysis, and solutions from an idealized linear model. The null hypothesis is that the three components are mutually independent. Cyclostationary EOF (CsEOF) analysis is applied on filtered OLR to extract the life cycle of the BSISV. The dominant CsEOF mode is significantly tied to the observed spatial rainfall pattern associated with the active/break phases over the Indian subcontinent. The components of the heating patterns from CsEOF analysis serve as prescribed forcings for the dry version of the linear model. This allows one to investigate the possible roles that the regional heat sources and sinks play in driving the large-scale monsoon circulation at various stages of the BSISV life cycle. To understand the interactive nature between convection and circulation, the moist version of the model is forced with intraseasonal SST anomalies. The linear models reproduce the major features of the BSISV seen in the reanalysis. The linear model suggests three new findings: (i) The circulation anomalies that develop as a Rossby wave response to suppressed convection over the equatorial Indian Ocean associated with the previous break phase of the BSISV results in low-level convergence and tropospheric moisture enhancement over the equatorial western Indian Ocean and helps trigger the next active phase of the BSISV. (ii) The development of convection over the tropical west Pacific forces descent anomalies to the west. This, in conjunction with the weakened cross-equatorial flow due to suppressed convective anomalies over the equatorial Indian Ocean, reduces the tropospheric moisture over the Arabian Sea and promotes westerly wind anomalies that do not recurve over India. As a result the low-level cyclonic vorticity shifts from India to Southeast Asia and break conditions are initiated over India. (iii) The circulation anomalies forced by equatorial Indian Ocean convective anomalies significantly influence the active/break phases over the tropical west Pacific. The model solutions support the hypothesis that the three components of the BSISV influence each other but do not imply that such an influence is responsible for the space–time evolution of the BSISV. Further, the applicability of the model results to the observed system is constrained by the assumption that linear interactions are sufficient to address the BSISV and that air–sea interaction and transient forcing are excluded.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference83 articles.

1. Active/break cycles: Diagnosis of the intraseasonal variability over the Asian summer monsoon.;Annamalai;Climate Dyn.,2001

2. The mean evolution and variability of the Asian summer monsoon: Comparison of ECMWF and NCEP–NCAR reanalyses.;Annamalai;Mon. Wea. Rev.,1999

3. A new convective adjustment scheme. Part II: Single column test using GATE wave, BOMEX, ATEX, and arctic air-mass data sets.;Betts;Quart. J. Roy. Meteor. Soc.,1986

4. BOBMEX: The Bay of Bengal Monsoon Experiment.;Bhat;Bull. Amer. Meteor. Soc.,2001

5. Water vapor transport over the Indian Ocean during the 1979 summer monsoon. Part I: Water vapor fluxes.;Cadet;Mon. Wea. Rev.,1987

Cited by 166 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3