Normal-Mode Analysis of a Baroclinic Wave-Mean Oscillation

Author:

Wolfe Christopher L.1,Samelson Roger M.1

Affiliation:

1. College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Abstract

Abstract The stability of a time-periodic baroclinic wave-mean oscillation in a high-dimensional two-layer quasigeostrophic spectral model is examined by computing a full set of time-dependent normal modes (Floquet vectors) for the oscillation. The model has 72 × 62 horizontal resolution and there are 8928 Floquet vectors in the complete set. The Floquet vectors fall into two classes that have direct physical interpretations: wave-dynamical (WD) modes and damped-advective (DA) modes. The WD modes (which include two neutral modes related to continuous symmetries of the underlying system) have large scales and can efficiently exchange energy and vorticity with the basic flow; thus, the dynamics of the WD modes reflects the dynamics of the wave-mean oscillation. These modes are analogous to the normal modes of steady parallel flow. On the other hand, the DA modes have fine scales and dynamics that reduce, to first order, to damped advection of the potential vorticity by the basic flow. While individual WD modes have immediate physical interpretations as discrete normal modes, the DA modes are best viewed, in sum, as a generalized solution to the damped advection problem. The asymptotic stability of the time-periodic basic flow is determined by a small number of discrete WD modes and, thus, the number of independent initial disturbances, which may destabilize the basic flow, is likewise small. Comparison of the Floquet exponent spectrum of the wave-mean oscillation to the Lyapunov exponent spectrum of a nearby aperiodic trajectory suggests that this result will still be obtained when the restriction to time periodicity is relaxed.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference30 articles.

1. Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems: A method for computing all of them.;Bennetin;Meccanica,1980

2. Stability of inviscid plane Couette flow.;Case;Phys. Fluids,1960

3. The dynamics of long waves in a baroclinic westerly current.;Charney;J. Meteor.,1947

4. Theory of Ordinary Differential Equations.;Coddington,1955

5. Cvitanović, P., R.Artuso, R.Mainieri, G.Tanner, and G.Vattay, cited. 2005: Chaos: Classical and Quantum. Neils Bohr Institute. [Available online at www.ChaosBook.org.].

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3