A Spectral Deferred Correction Method Applied to the Shallow Water Equations on a Sphere

Author:

Jia Jun1,Hill Judith C.1,Evans Katherine J.1,Fann George I.1,Taylor Mark A.2

Affiliation:

1. Oak Ridge National Laboratory, Oak Ridge, Tennessee

2. Sandia National Laboratories, Albuquerque, New Mexico

Abstract

Abstract Although significant gains have been made in achieving high-order spatial accuracy in global climate modeling, less attention has been given to the impact imposed by low-order temporal discretizations. For long-time simulations, the error accumulation can be significant, indicating a need for higher-order temporal accuracy. A spectral deferred correction (SDC) method is demonstrated of even order, with second- to eighth-order accuracy and A-stability for the temporal discretization of the shallow water equations within the spectral-element High-Order Methods Modeling Environment (HOMME). Because this method is stable and of high order, larger time-step sizes can be taken while still yielding accurate long-time simulations. The spectral deferred correction method has been tested on a suite of popular benchmark problems for the shallow water equations, and when compared to the explicit leapfrog, five-stage Runge–Kutta, and fully implicit (FI) second-order backward differentiation formula (BDF2) time-integration methods, it achieves higher accuracy for the same or larger time-step sizes. One of the benchmark problems, the linear advection of a Gaussian bell height anomaly, is extended to run for longer time periods to mimic climate-length simulations, and the leapfrog integration method exhibited visible degradation for climate length simulations whereas the second-order and higher methods did not. When integrated with higher-order SDC methods, a suite of shallow water test problems is able to replicate the test with better accuracy.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3