Affiliation:
1. International Pacific Research Center and Department of Meteorology, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii
Abstract
Abstract
To improve the initial conditions of tropical cyclone (TC) forecast models, a dynamical initialization (DI) scheme using cycle runs is developed and implemented into a real-time forecast system for northwest Pacific TCs based on the Weather Research and Forecasting (WRF) Model. In this scheme, cycle runs with a 6-h window before the initial forecast time are repeatedly conducted to spin up the axisymmetric component of the TC vortex until the model TC intensity is comparable to the observed. This is followed by a 72-h forecast using the Global Forecast System (GFS) prediction as lateral boundary conditions. In the DI scheme, the spectral nudging technique is employed during each cycle run to reduce bias in the large-scale environmental field, and the relocation method is applied after the last cycle run to reduce the initial position error. To demonstrate the effectiveness of the proposed DI scheme, 69 forecast experiments with and without the DI are conducted for 13 TCs over the northwest Pacific in 2010 and 2011. The DI shows positive effects on both track and intensity forecasts of TCs, although its overall skill depends strongly on the performance of the GFS forecasts. Compared to the forecasts without the DI, on average, forecasts with the DI reduce the position and intensity errors by 10% and 30%, respectively. The results demonstrate that the proposed DI scheme improves the initial TC vortex structure and intensity and provides warm physics spinup, producing initial states consistent with the forecast model, thus achieving improved track and intensity forecasts.
Publisher
American Meteorological Society
Cited by
87 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献