Spread Calibration of Ensemble MOS Forecasts

Author:

Veenhuis Bruce A.1

Affiliation:

1. Meteorological Development Laboratory, Office of Science and Technology, NOAA/National Weather Service, Silver Spring, Maryland

Abstract

Abstract Ensemble forecasting systems often contain systematic biases and spread deficiencies that can be corrected by statistical postprocessing. This study presents an improvement to an ensemble statistical postprocessing technique, called ensemble kernel density model output statistics (EKDMOS). EKDMOS uses model output statistics (MOS) equations and spread–skill relationships to generate calibrated probabilistic forecasts. The MOS equations are multiple linear regression equations developed by relating observations to ensemble mean-based predictors. The spread–skill relationships are one-term linear regression equations that predict the expected accuracy of the ensemble mean given the ensemble spread. To generate an EKDMOS forecast, the MOS equations are applied to each ensemble member. Kernel density fitting is used to create a probability density function (PDF) from the ensemble MOS forecasts. The PDF spread is adjusted to match the spread predicted by the spread–skill relationship, producing a calibrated forecast. The improved EKDMOS technique was used to produce probabilistic 2-m temperature forecasts from the North American Ensemble Forecast System (NAEFS) over the period 1 October 2007–31 March 2010. The results were compared with an earlier spread adjustment technique, as well as forecasts generated by rank sorting the bias-corrected ensemble members. Compared to the other techniques, the new EKDMOS forecasts were more reliable, had a better calibrated spread–error relationship, and showed increased day-to-day spread variability.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3