An Ensemble-Based Four-Dimensional Variational Data Assimilation Scheme. Part III: Antarctic Applications with Advanced Research WRF Using Real Data

Author:

Liu Chengsi1,Xiao Qingnong1

Affiliation:

1. College of Marine Science, University of South Florida, St. Petersburg, Florida

Abstract

Abstract A four-dimensional ensemble-based variational data assimilation (4DEnVar) algorithm proposed in Part I of the 4DEnVar series (denoted En4DVar in Part I, but here we refer to it as 4DEnVar according to WMO conference recommendation to differentiate it from En4DVar algorithm using adjoint model) uses a flow-dependent background error covariance calculated from ensemble forecasts and performs 4DVar optimization based on an incremental approach and a preconditioning algorithm. In Part II, the authors evaluated 4DEnVar with observing system simulation experiments (OSSEs) using the Advanced Research Weather Research and Forecasting Model (ARW-WRF, hereafter WRF). The current study extends the 4DEnVar to assimilate real observations for a cyclone in the Antarctic and the Southern Ocean in October 2007. The authors performed an intercomparison of four different WRF variational approaches for the case, including three-dimensional variational data assimilation (3DVar), first guess at the appropriate time (FGAT), and ensemble-based three-dimensional (En3DVar) and four-dimensional (4DEnVar) variational data assimilations. It is found that all data assimilation approaches produce positive impacts in this case. Applying the flow-dependent background error covariance in En3DVar and 4DEnVar yields forecast skills superior to those with the homogeneous and isotropic background error covariance in 3DVar and FGAT. In addition, the authors carried out FGAT and 4DEnVar 3-day cycling and 72-h forecasts. The results show that 4DEnVar produces a better performance in the cyclone prediction. The inflation factor on 4DEnVar can effectively improve the 4DEnVar analysis. The authors also conducted a short period (10-day lifetime of the cyclone in the domain) of analysis/forecast intercomparison experiments using 4DEnVar, FGAT, and 3DVar. The 4DEnVar scheme demonstrates overall superior and robust performance.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3