Radar Data Assimilation with WRF 4D-Var. Part II: Comparison with 3D-Var for a Squall Line over the U.S. Great Plains

Author:

Sun Juanzhen1,Wang Hongli1

Affiliation:

1. National Center for Atmospheric Research,* Boulder, Colorado

Abstract

Abstract The Weather Research and Forecasting Model (WRF) four-dimensional variational data assimilation (4D-Var) system described in Part I of this study is compared with its corresponding three-dimensional variational data assimilation (3D-Var) system using a Great Plains squall line observed during the International H2O Project. Two 3D-Var schemes are used in the comparison: a standard 3D-Var radar data assimilation (DA) that is the same as the 4D-Var except for the exclusion of the constraining dynamical model and an enhanced 3D-Var that includes a scheme to assimilate an estimated in-cloud humidity field. The comparison is made by verifying their skills in 0–6-h quantitative precipitation forecast (QPF) against stage-IV analysis, as well as in wind forecasts against radial velocity observations. The relative impacts of assimilating radial velocity and reflectivity on QPF are also compared between the 4D-Var and 3D-Var by conducting data-denial experiments. The results indicate that 4D-Var substantially improves the QPF skill over the standard 3D-Var for the entire 6-h forecast range and over the enhanced 3D-Var for most forecast hours. Radial velocity has a larger impact relative to reflectivity in 4D-Var than in 3D-Var in the first 3 h because of a quicker precipitation spinup. The analyses and forecasts from the 4D-Var and 3D-Var schemes are further compared by examining the meridional wind, horizontal convergence, low-level cold pool, and midlevel temperature perturbation, using analyses from the Variational Doppler Radar Analysis System (VDRAS) as references. The diagnoses of these fields suggest that the 4D-Var analyzes the low-level cold pool, its leading edge convergence, and midlevel latent heating in closer resemblance to the VDRAS analyses than the 3D-Var schemes.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference41 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3