Seasonal and Spatial Variability of Near-Inertial Kinetic Energy from Historical Moored Velocity Records

Author:

Alford Matthew H.1,Whitmont Maya1

Affiliation:

1. Applied Physics Laboratory, and School of Oceanography, University of Washington, Seattle, Washington

Abstract

Abstract Temporal and spatial patterns of near-inertial kinetic energy (KEmoor) are investigated in a database of 2480 globally distributed, moored current-meter records (deployed on 690 separate moorings) and compared with the distribution of wind-forced mixed-layer energy flux FML. By computing KEmoor using short (30 day) multitaper spectral windows, the seasonal cycle is resolved. Clear winter enhancement by a factor of 4–5 is seen in the Northern Hemisphere for latitudes 25°–45° at all depths <4500 m, in close agreement with the magnitude, phase, and latitudinal dependence of the seasonal cycle of FML. In the Southern Hemisphere, data coverage is poorer, but a weaker seasonal cycle (a factor of 2) in both KEmoor and FML is still resolvable between 35° and 50°. When Wentzel–Kramers–Brillouin (WKB) scaled using climatological buoyancy-frequency profiles, summer KEmoor is approximately constant in depth while showing a clear decrease by a factor of 4–5 from 500 to 3500 m in winter. Spatial coverage is sufficient in the Northern Hemisphere to resolve broad KEmoor maxima in the western portion of each ocean basin in winter, generally collocated with FML maxima associated with storm forcing. The ratio of depth-integrated KEmoor to FML gives a replenishment time scale, which is about 10 days in midlatitudes, consistent with 1) previous estimates of the dissipation time scale of the internal wave continuum and 2) the presence of a seasonal cycle. Its increase to ≈70–80 days at lower latitudes is a possible signature of equatorward propagation of near-inertial waves. The seasonal modulation of the magnitude of KEmoor, its similarity to that in FML, and the depth decay and western intensification in winter but not in summer are consistent with a primarily wind-forced near-inertial field for latitudes poleward of ≈25°.

Publisher

American Meteorological Society

Subject

Oceanography

Reference48 articles.

Cited by 92 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3