The Utility of X-Band Polarimetric Radar for Quantitative Estimates of Rainfall Parameters

Author:

Matrosov Sergey Y.1,Kingsmill David E.1,Martner Brooks E.1,Ralph F. Martin2

Affiliation:

1. Cooperative Institute for Research in Environmental Sciences, University of Colorado, and NOAA/Environmental Technology Laboratory, Boulder, Colorado

2. NOAA/Environmental Technology Laboratory, Boulder, Colorado

Abstract

Abstract The utility of X-band polarimetric radar for quantitative retrievals of rainfall parameters is analyzed using observations collected along the U.S. west coast near the mouth of the Russian River during the Hydrometeorological Testbed project conducted by NOAA’s Environmental Technology and National Severe Storms Laboratories in December 2003 through March 2004. It is demonstrated that the rain attenuation effects in measurements of reflectivity (Ze) and differential attenuation effects in measurements of differential reflectivity (ZDR) can be efficiently corrected in near–real time using differential phase shift data. A scheme for correcting gaseous attenuation effects that are important at longer ranges is introduced. The use of polarimetric rainfall estimators that utilize specific differential phase and differential reflectivity data often provides results that are superior to estimators that use fixed reflectivity-based relations, even if these relations were derived from the ensemble of drop size distributions collected in a given geographical region. Comparisons of polarimetrically derived rainfall accumulations with data from the high-resolution rain gauges located along the coast indicated deviation between radar and gauge estimates of about 25%. The ZDR measurements corrected for differential attenuation were also used to retrieve median raindrop sizes, D0. Because of uncertainties in differential reflectivity measurements, these retrievals are typically performed only for D0 > 0.75 mm. The D0 estimates from an impact disdrometer located at 25 km from the radar were in good agreement with the radar retrievals. The experience of operating the transportable polarimetric X-band radar in the coastal area that does not have good coverage by the National Weather Service radar network showed the value of such radar in filling the gaps in the network coverage. The NOAA X-band radar was effective in covering an area up to 40–50 km in radius offshore adjacent to a region that is prone to flooding during wintertime landfalling Pacific storms.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3