A Novel Approach for Selective Reconstruction of Cloud-Contaminated Satellite Images

Author:

Shukla Bipasha Paul1,Pal P. K.1,Joshi P. C.1

Affiliation:

1. Atmospheric and Oceanic Sciences Group, Space Applications Centre, Indian Space Research Organisation, Ahmedabad, India

Abstract

Abstract The paper presents a robust technique for cloud clearing of satellite imagery. The proposed algorithm combines mathematical morphological techniques with a conventional cloud clearing scheme to restore clear sky values. The derived equivalent clear sky brightness temperature plays a very important role in numerical weather prediction, climate research, and monitoring. The developed methodology uses distinct approaches for reconstruction of partially clouded domains and overcast regions. It is found that the algorithm is especially suitable for pre- or postmonsoon months, where there is a high percentage of partially cloudy and small overcast cloudy regions. The algorithm is tested for the Kalpana Very High Resolution Radiometer (VHRR) thermal infrared (TIR) band data acquired over the oceanic region adjoining India throughout the month of May 2009. It is found that the algorithm is able to clear 25% of cloudy pixels with an RMSE of 1.2 K for brightness temperature.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Reference17 articles.

1. A three step cloud clearing procedure for infrared sounder measurement;Andretta;Int. J. Remote Sens.,1990

2. Detection and removal of cloud contamination from AVHRR images;Cihlar;IEEE Trans. Geosci. Remote Sens.,1994

3. Computer and Robot Vision;Haralick,1992

4. Characteristics of maximum-value composite images from temporal AVHRR data;Holben;Int. J. Remote Sens.,1986

5. Developments and achievements in atmospheric sciences and space meteorology in India;Jayaraman;Curr. Sci.,2007

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3