Using Wind Anomalies to Forecast East Coast Winter Storms

Author:

Stuart Neil A.1,Grumm Richard H.2

Affiliation:

1. NOAA/National Weather Service, Wakefield, Virginia

2. NOAA/National Weather Service, State College, Pennsylvania

Abstract

Abstract Forecasting major winter storms is a critical function for all weather services. Conventional model-derived fields from numerical weather prediction models most frequently utilized by operational forecasters, such as pressure level geopotential height, temperature fields, quantitative precipitation forecasts, and model output statistics, are often insufficient to determine whether a winter storm represents a large departure from normal, or has the potential to produce significant snowfall. This paper presents a method, using normalized departures from climatology, to assist forecasters in identifying long-duration and potentially significant winter storms. The focus of this paper is on anomalous low- and upper-level wind anomalies associated with winter storms along the U.S. east coast. Observed and forecast low-level (850 hPa) and upper-level (300 and 250 hPa) easterly wind anomalies are compared with a 30-yr (1961–90) reanalysis climatology. Anomalous easterly low-level winds are correlated with enhanced low-level forcing and frontogenesis. Strong low-level winds can also contribute to enhanced precipitation rates. Upper-level winds that are anomalously below normal, represented as easterly wind anomalies, are also correlated with systems that are cut off from the main belt of westerlies, which may result in slower movement of the system, leading to long-duration events. The proposed method of evaluating easterly wind anomalies is shown to assist in identifying potentially slow-moving storms with extended periods of enhanced precipitation. To illustrate this method, winter storms on 25–26 December 2002 and 2–4 January 2003 will be compared with past historical winter storms. The results suggest that the low- and upper-level wind anomalies in the two recent snowstorms share common characteristics with several record snowstorms over the past 52 yr. Many of these storms were associated with easterly wind anomalies that departed significantly (2 or more standard deviations) from normal. The examination of climatic anomalies from model forecasts may assist forecasters in identifying significant winter storms in the short range (2–3 days) and potentially out to ranges as long as 7 days when ensemble forecast guidance is utilized.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference24 articles.

1. Statistics in Practice.;Blaisdell,1993

2. United States east coast trough indices at 500 hPa and New England winter climate variability.;Bradbury;J. Climate,2002

3. Some relationships between 850 Millibar lows and heavy snow occurrences over the central and eastern United States.;Brown;Mon. Wea. Rev.,1970

4. A reexamination of the mechanisms responsible for banded precipitation.;Clark;Mon. Wea. Rev.,2002

5. Geophysical data analysis and visualization using GrADS.;Doty,1995

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3