The Zonal Oscillation and the Driving Mechanisms of the Extreme Western North Pacific Subtropical High and Its Impacts on East Asian Summer Precipitation

Author:

Cheng Tat Fan1,Lu Mengqian2,Dai Lun1

Affiliation:

1. Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China

2. Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, and Guangzhou HKUST Fok Ying Tung Research Institute, Nansha, Guangzhou, China

Abstract

AbstractThis paper scrutinizes the zonal oscillation of the western North Pacific subtropical high (WNPSH) via diagnosing its two extreme phases, which are defined by the top 10% strongest (positive phase) and the weakest (negative phase) WNPSH index (WNPSHI) days during summers in 1979–2016. Key findings include the following: a tripole pattern consisting of intensified (weakened) precipitation over the Maritime Continent and the East Asian summer monsoon regions, and suppressed (strengthened) precipitation over the western North Pacific summer monsoon region during positive (negative) WNPSH phases; a westward movement of WNPSH-induced precipitation anomalies that subsequently affects eastern China, Japan, and the Korean Peninsula at different time lags; an OLR–vorticity pattern explained by atmospheric responses to thermal sources is suggested to drive the oscillation; and the competitive interaction of local air–sea feedbacks, especially during the positive phase. In addition, moderate-to-strong positive correlations between the WNPSHI and the Niño-3.4 index are found on 1–2-, 2–3-, and 3–6-yr time scales; both exhibit decadal shifts to a higher-frequency mode, suggesting the intensification of both the zonal WNPSH oscillation and the ENSO under the changing climate and their close interdecadal association. A nonlinear quasi-biennial WNPSH–ENSO relationship is identified: the positive (negative) WNPSH phase sometimes occurs during 1) a decaying El Niño (La Niña) in the preceding summer/autumn, and/or 2) a developing La Niña (El Niño) in the current summer/autumn. A full ENSO transition from moderate-to-strong El Niño to La Niña is often seen during the positive phase, offering potential in predicting ENSO events and extreme WNPSH phases and thereby the summer monsoon rainfall in East Asia.

Funder

Research Grants Council, University Grants Committee

National Natural Science Foundation of China

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3