On the Relationship between Mean Monsoon Precipitation and Low Pressure Systems in Climate Model Simulations

Author:

Praveen V.1,Sandeep S.1,Ajayamohan R. S.1

Affiliation:

1. Center for Prototype Climate Modeling, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates

Abstract

Abstract The north-northwest-propagating low pressure systems (LPS) are an important component of the Indian summer monsoon (ISM). The objective detection and tracking of LPS in reanalysis products and climate model simulations are challenging because of the weak structure of the LPS compared to tropical cyclones. Therefore, the skill of reanalyses and climate models in simulating the monsoon LPS is unknown. A robust method is presented here to objectively identify and track LPS, which mimics the conventional identification and tracking algorithm based on detecting closed isobars on surface pressure charts. The new LPS tracking technique allows a fair comparison between the observed and simulated LPS. The analysis based on the new tracking algorithm shows that the reanalyses from ERA-Interim and MERRA were able to reproduce the observed climatology and interannual variability of the monsoon LPS with a fair degree of accuracy. Further, the newly developed LPS detection and tracking algorithm is also applied to the climate model simulations of phase 5 of the Coupled Model Intercomparison Project (CMIP5). The CMIP5 models show considerable spread in terms of their skill in LPS simulation. About 60% of the observed total summer monsoon precipitation over east-central India is found to be associated with LPS activities, while in model simulations this ratio varies between 5% and 60%. Those models that simulate synoptic activity realistically are found to have better skill in simulating seasonal mean monsoon precipitation. The model-to-model variability in the simulated synoptic activity is found to be linked to the intermodel spread in zonal wind shear over the Indian region, which is further linked to inadequate representation of the tropical easterly jet in climate models. These findings elucidate the mechanisms behind the model simulation of ISM precipitation, synoptic activity, and their interdependence.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3