Warm Organized Rain Systems over the Tropical Eastern Pacific

Author:

Chen Baohua1,Liu Chuntao1

Affiliation:

1. Department of Physical and Environmental Sciences, Texas A&M University–Corpus Christi, Corpus Christi, Texas

Abstract

Abstract This study uses 16-yr Tropical Rainfall Measuring Mission (TRMM) radar precipitation feature (RPF) data to characterize warm rain systems in the tropics with large horizontal extensions, referred to as warm organized rain systems. The systems are selected by specifying the RPFs with minimum infrared brightness temperature warmer than 0°C and rain area greater than 500 km2. ERA-Interim atmospheric fields and SST from NOAA are analyzed to highlight the environmental characteristics of warm organized rain systems. Warm organized systems occur over specific oceanic regions, including the eastern Pacific ITCZ, the eastern part of the SPCZ, and coastal regions. In contrast with ubiquitous warm isolated RPFs, warm organized systems have greater near-surface radar reflectivity. The rainfall amounts generated by warm organized systems are greater in winter than in summer. Composite analyses indicate that warm organized RPFs prefer to coexist with a dry midtroposphere associated with a strong upper-level descent, an enhanced near-surface moisture convergence, and a strong low-level large-scale ascent. The shallow meridional circulation in the eastern Pacific is significantly stronger for warm organized RPFs compared to the circulation for warm isolated RPFs. Warm organized systems over the tropical eastern Pacific occur at warm SSTs with mean value of about 27°C and a strong SST meridional gradient. The warm organized RPFs in the tropical eastern Pacific are found to be at the southern edge of deep ITCZ cores. This is probably related to the meridional asymmetrical thermodynamic structure over the eastern Pacific ITCZ with a higher low-level humidity to the south. Similar favorable large-scale environments for the warm organized RPFs are also found over the SPCZ and other regions.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3