Affiliation:
1. Oceanography Department, U.S. Naval Academy, Annapolis, Maryland, and Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Mexico City, Mexico
2. School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York
Abstract
Monthly precipitation in Chile (30°–55°S) was found to vary by intensity, latitude, and longitude of the South Pacific high (SPH). In austral winter, precipitation was higher when the SPH was weaker and when it was centered farther west. In austral spring, precipitation was higher when the SPH was weaker, similar to winter. However, spring precipitation was not found to be related to SPH longitude, and higher precipitation was found when the SPH was centered farther north. In austral summer, no relationship was found between precipitation and either SPH intensity or longitude, but positive correlations were found between precipitation and latitude of the SPH. In austral autumn, correlation patterns between precipitation and all three SPH metrics more closely resembled those seen in winter. The results of a multiple linear regression confirmed the importance of two SPH metrics (intensity and longitude) and the unimportance of a third SPH metric (latitude) in understanding variability in winter, summer, and autumn precipitation in central and southern Chile. In spring, regression results confirmed a relationship between precipitation and SPH intensity and latitude. Furthermore, the SPH intensity and longitude in winter combined to hindcast monthly precipitation with a better goodness of fit than five El Niño–Southern Oscillation metrics traditionally related to Chilean precipitation. Anomalies of lower-tropospheric circulation and vertical velocities were found to support the observed relationships between SPH and precipitation. Based on these results, a physical mechanism is proposed that employs the SPH as a metric to aid in understanding variability in precipitation in central and south-central Chile in all seasons.
Publisher
American Meteorological Society
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献