Equilibrium- and Transient-State Dependencies of Climate Sensitivity: Are They Important for Climate Projections?

Author:

Geoffroy Olivier1,Saint-Martin David1

Affiliation:

1. Centre National de Recherches Météorologiques, Météo-France, CNRS, Toulouse, France

Abstract

AbstractThe effective equilibrium climate sensitivity is generally assumed to be constant in climate change studies, whereas it may vary due to different mechanisms. This study assesses the importance of the different types of state dependencies of the radiative feedbacks for constraining climate projections from the historical record. In transition, the radiative feedbacks may vary with the changes in the warming pattern due to inhomogeneous ocean heat uptake. They may also vary in equilibrium due to their dependence on both temperature and CO2 concentration. A two-layer energy balance model (EBM) that accounts for these effects is shown to improve the representation of any CO2 pathway for the CMIP5 ensemble. Neglecting the nonlinear effects in constraint studies of climate projections from the historical record may induce errors in the estimated future warming. The EBM framework is used to study these errors for three characteristic CO2 pathways. The results show that the pattern effect of ocean heat uptake is not of major importance by inducing a median error of roughly −2% for a high-emission scenario. In contrast, assuming a log-linear CO2–ERF relationship and neglecting the equilibrium-state dependencies induce a larger median error of roughly −10%. This median error is likely due to the non-log-linear dependency of the instantaneous (nonadjusted) forcing, suggesting that the equilibrium-state dependencies do not induce any systematic error. However, they contribute to increasing uncertainties in future warming estimation.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3