Topological Constraints by the Greenland–Scotland Ridge on AMOC and Climate

Author:

Rheinlænder Jonathan W.1,Ferreira David2,Nisancioglu Kerim H.3

Affiliation:

1. Department of Earth Science, University of Bergen and the Bjerknes Centre for Climate Research, Bergen, Norway

2. Department of Meteorology, University of Reading, Reading, United Kingdom

3. Department of Earth Science, University of Bergen and the Bjerknes Centre for Climate Research, Bergen, Norway, and Centre for Earth Evolution and Dynamics, Oslo, Norway

Abstract

AbstractChanges in the geometry of ocean basins have been influential in driving climate change throughout Earth’s history. Here, we focus on the emergence of the Greenland–Scotland Ridge (GSR) and its influence on the ocean state, including large-scale circulation, heat transport, water mass properties, and global climate. Using a coupled atmosphere–ocean–sea ice model, we consider the impact of introducing the GSR in an idealized Earth-like geometry, comprising a narrow Atlantic-like basin and a wide Pacific-like basin. Without the GSR, deep-water formation occurs near the North Pole in the Atlantic basin, associated with a deep meridional overturning circulation (MOC). By introducing the GSR, the volume transport across the sill decreases by 64% and deep convection shifts south of the GSR, dramatically altering the structure of the high-latitude MOC. Due to compensation by the subpolar gyre, the northward ocean heat transport across the GSR only decreases by ~30%. As in the modern Atlantic Ocean, a bidirectional circulation regime is established with warm Atlantic water inflow and a cold dense overflow across the GSR. In sharp contrast to the large changes north of the GSR, the strength of the Atlantic MOC south of the GSR is unaffected. Outside the high latitudes of the Atlantic basin, the surface climate response is surprisingly small, suggesting that the GSR has little impact on global climate. Our results suggest that caution is required when interpreting paleoproxy and ocean records, which may record large local changes, as indicators of basin-scale changes in the overturning circulation and global climate.

Funder

FP7 Ideas: European Research Council

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3