Thermal Stratification in Simulations of Warm Climates: A Climatology Using Saturation Potential Vorticity

Author:

Zamora Ryan A.1,Korty Robert L.1,Huber Matthew2

Affiliation:

1. Texas A&M University, College Station, Texas

2. University of New Hampshire, Durham, New Hampshire

Abstract

Abstract The spatial and temporal distribution of stable and convectively neutral air masses is examined in climate simulations with carbon dioxide levels spanning from modern-day values to very high levels that produce surface temperatures relevant to the hottest climate of the past 65 million years. To investigate how stability with respect to slantwise and upright moist convection changes across a wide range of climate states, the condition of moist convective neutrality in climate experiments is assessed using metrics based upon the saturation of potential vorticity, which is zero when temperature profiles are moist adiabatic profiles along vortex lines. The modern climate experiment reproduces previously reported properties from reanalysis data, in which convectively neutral air masses are common in the tropics and locally at higher latitudes, especially over midlatitude continents in summer and ocean storm tracks in winter. The frequency and coverage of air masses with higher stabilities declines in all seasons at higher latitudes with warming; the hottest case features convectively neutral air masses in the Arctic a majority of the time in January and nearly universally in July. The contribution from slantwise convective motions (as distinct from upright convection) is generally small outside of midlatitude storm tracks, and it declines in the warmer climate experiments, especially during summer. These findings support the conjecture that moist adiabatic lapse rates become more widespread in warmer climates, providing a physical basis for using this assumption in estimating paleoaltimetry during warm intervals such as the early Eocene.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3