Potential to Constrain Projections of Hot Temperature Extremes

Author:

Borodina Aleksandra1ORCID,Fischer Erich M1,Knutti Reto1

Affiliation:

1. Institute for Atmosphere and Climate Science, ETH Zurich, Zurich, Switzerland

Abstract

Projected changes in temperature extremes, such as regional changes in the intensity and frequency of hot extremes, differ strongly across climate models. This study shows that this disagreement can be partly explained by discrepancies in the representation of the present-day temperature distribution, motivating the evaluation of models with observations. By evaluating climate models on carefully selected metrics, the models that are more likely to be reliable for long-term projections of temperature extremes are identified. The study found that frequencies of hot extremes are likely to increase at a higher rate than the multimodel mean estimate over large parts of the Northern Hemisphere and Australia. This implies that a higher degree of adaptation is required for a given global temperature target. It also found that projected changes in the intensity of hot extremes can be constrained in several regions, including Australia, central North America, and north Asia. In many other regions, large internal variability can often hamper model evaluation. For both aspects—the intensity and the frequency of hot extremes—the total area over which the constraints can be implemented is limited by the quality and completeness of observations. Thereby, this study highlights the importance of long-term, high-quality, and easily accessible observational records for model evaluation, which are vital to ultimately reduce uncertainties in projections of temperature extremes.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3