Affiliation:
1. National Center for Atmospheric Research, Boulder, Colorado
Abstract
Precipitation is often quantified by the amount that falls over a given period of time but not the rate at which most of it falls or the rate associated with the most frequent events. Here, three metrics are introduced to distill salient characteristics of typical daily precipitation accumulation based on the full distribution of rainfall: rain amount peak (the rain rate at which the most rain falls), rain frequency peak (the most frequent nonzero rain rate), and rain amount width (a measure of the variability of typical precipitation accumulation). These metrics are applied to two observational datasets to describe the climatology of typical daily precipitation accumulation: GPCP 1° daily (October 1996–October 2015) and TMPA 3B42 (January 1998–October 2015). Results show that the rain frequency peak is similar to total rainfall in terms of geographical pattern and seasonal cycle and varies inversely with rain amount width. In contrast, the rain amount peak varies distinctly, reaching maxima on the outer edges of the regions of high total precipitation, and with less seasonal variation. Despite that GPCP and TMPA 3B42 are both merged satellite–gauge precipitation products, they show substantial differences. In particular, the rain amount peak and rain amount width are uniformly greater in TMPA 3B42 compared to GPCP, and there are large discrepancies in their rain frequency distributions (peak and width). Issues relating to model evaluation are highlighted using CESM1 as an illustrative example and underscore the need for observational datasets incorporating measurements of light rain.
Funder
National Center for Atmospheric Research
University of Colorado Boulder
Office of Science
Directorate for Geosciences
Publisher
American Meteorological Society
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献