Relationships between Hourly Rainfall Intensity and Atmospheric Variables over the Contiguous United States

Author:

Lepore Chiara1,Allen John T.2,Tippett Michael K.3

Affiliation:

1. Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

2. International Research Institute for Climate and Society, Columbia University, Palisades, New York

3. Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York, and Center of Excellence for Climate Change Research, Department of Meteorology, King Abdulaziz University, Jeddah, Saudi Arabia

Abstract

Abstract Rainfall intensity displays relationships with atmospheric conditions such as surface temperature, and these relationships have implications for how the intensity of rainfall varies with climate. Here, hourly gauge measurements of rainfall over the contiguous United States (CONUS) are related to atmospheric variables taken from the North American Regional Reanalysis for the period 1979–2012. This analysis extends previous work relating the rainfall process to the environment by including a wider range of variables in univariate and bivariate quantile regressions. Known covariate relationships are used to quantify the regional contributions of different weather regimes to rainfall occurrence and to identify preferential atmospheric states for rainfall occurrence. The efficiency of different sets of regressors is evaluated, and the results show that both moisture availability and vertical instability should be taken into account, with CAPE in combination with specific humidity or dewpoint temperature being the most powerful regressors. Different regions and seasons behave differently, pointing to the challenges of constructing global or CONUS-wide models for representing the rainfall process. In particular, the relationships between environment and rainfall in the west of the United States are different from other regions, reflecting nonlocal rainfall processes. Most of the coastal and eastern United States display relatively low regional variability in the relationships between rainfall and environment.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3