A New Method to Objectively Classify Extratropical Cyclones for Climate Studies: Testing in the Southwest Pacific Region

Author:

Catto Jennifer L.1ORCID

Affiliation:

1. Monash University, Melbourne, Victoria, Australia, and University of Exeter, Exeter, United Kingdom

Abstract

Extratropical cyclones can vary widely in their configuration during cyclogenesis, development mechanisms, spatial and temporal characteristics, and impacts. An automated method to classify extratropical cyclones identified in ERA-Interim data from 1979 to 2010 in the Australia and New Zealand region has been developed. The technique uses K-means clustering on two upper-tropospheric flow fields at the time of cyclogenesis and identifies four distinct clusters. Composites of these clusters are investigated, along with their life cycles and their spatial and temporal variability. The four clusters are similar to a previous manual classification. Cluster 1 develops in the equatorward entrance region of the subtropical jet, clusters 2 and 4 develop in the poleward exit region of the subtropical jet but with different relative positions of the upper-level trough and jet streak, and cluster 3 resembles secondary cyclogenesis on a preexisting front far poleward of the subtropical jet. The clusters have different impacts in terms of their precipitation (cluster 1 has the highest average precipitation), different seasonal cycles, and different preferred genesis locations. Features of the composite cyclones resemble extratropical cyclones from other regions, indicating the utility of the method over larger regions. The method has been developed to be easily applied to climate model output in order to evaluate the ability of models to represent the full range of observed extratropical cyclones.

Funder

Australian Research Council

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3