Cross-Seasonal Relationship between the Boreal Autumn SAM and Winter Precipitation in the Northern Hemisphere in CMIP5

Author:

Liu Ting1,Li Jianping2,Feng Juan2,Wang Xiaofan3,Li Yang4

Affiliation:

1. State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Hangzhou, and State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China

2. College of Global Change and Earth System Sciences, Beijing Normal University, and Joint Center for Global Change Studies, Beijing, China

3. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China

4. College of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu, and College of Global Change and Earth System Sciences, Beijing Normal University, Beijing, China

Abstract

Abstract Recent work suggests that the boreal autumn Southern Hemisphere annular mode (SAM) favors a tripole pattern of winter precipitation anomalies in the Northern Hemisphere. This study focuses on the abilities of climate models that participated in phase 5 of the Coupled Model Intercomparison Project (CMIP5) to reproduce the physical processes involved in this observed cross-seasonal connection. A systematic evaluation suggested that 16 out of 25 models were essentially capable of reproducing this cross-seasonal connection. Two categories of models were selected to explore the underlying reasons for these successful simulations. Models that successfully simulated the cross-seasonal relationship were placed in the type-I category, and these performed well in reproducing the related physical mechanism, known as the “coupled ocean–atmosphere bridge,” in terms of the SST variability associated with the SAM and response of the meridional circulation to these SST anomalies. In contrast, the type-II category of models showed poor performance in representing the related processes and associated feedbacks, and the model biases compromised the performance of the simulated cross-seasonal relationship. These results demonstrate that the capability of the CMIP5 models to reproduce SST variability associated with the boreal autumn SAM and related coupled ocean–atmosphere bridge process plays a decisive role in the successful simulation of the cross-seasonal relationship.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3