Evaluation of Atmospheric Precipitable Water Characteristics and Trends in Mainland China from 1995 to 2012

Author:

Wang Rui1,Fu Yunfei12,Xian Tao1,Chen Fengjiao13,Yuan Renmin1,Li Rui1,Liu Guosheng4

Affiliation:

1. School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China

2. Key Laboratory of Atmospheric Sciences and Satellite Remote Sensing of Anhui Province, Anhui Institute of Meteorological Sciences, Hefei, China

3. Anhui Meteorological Information Centre, Anhui Institute of Meteorological Sciences, Hefei, China

4. Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, Florida

Abstract

Variations and trends of atmospheric precipitable water (APW) are examined using radiosonde data from Integrated Global Radiosonde Archive (IGRA) and China Meteorological Administration (CMA) from 1995 to 2012 in mainland China. The spatial distribution of the climatological mean APW shows that APW gradually decreases from the southern to the northern regions of mainland China. The seasonal mean pattern of APW shows clear regional difference, except for higher APW in summer (June–August) and lower APW in winter (December–February). Four regions show significantly downward trends in APW. Moreover, the trends of APW calculated using reanalysis datasets are consistent with the results of radiosonde data. Furthermore, the relationship between APW and the general circulation is investigated. The summer East Asian monsoon intensity and El Niño events show positive correlations with APW, whereas the North Atlantic Oscillation shows negative correlation with APW. The downward trend of APW is in accordance with the downward trend of mean column temperature (1000–300 hPa) at most stations, which suggests that decreasing mean column temperature results in decreasing APW in mainland China. Additionally, statistical analysis has revealed the regional trends in APW are not consistent with the regional trends in precipitation, implying that not all the variation of precipitation can be explained by APW.

Funder

National Natural Science Foundation of China

Special Funds for Public Welfare of China

Fundamental Research Funds for the Central Universities

Special Financial Grant from the China Postdoctoral Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3