Historical and Future Changes of Snowfall Events in China under a Warming Background

Author:

Zhou Botao1,Wang Zunya2,Shi Ying2,Xu Ying2,Han Zhenyu2

Affiliation:

1. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disaster, Ministry of Education, and School of Atmospheric Sciences, Nanjing University of Information Science and Technology, Nanjing, and National Climate Center, China Meteorological Administration, Beijing, China

2. National Climate Center, China Meteorological Administration, Beijing, China

Abstract

Using station data and Regional Climate Model version 4 (RegCM4) simulations under the representative concentration pathway 4.5 (RCP4.5) scenario, this article addresses historical and future changes of the wintertime snowfall over China. The observational results generally show a decrease in the frequency and an increase in the mean intensity of snowfalls in northwestern China (NWC), northeastern China (NEC), the eastern Tibetan Plateau (ETP), and southeastern China (SEC) since the 1960s. The total amount of wintertime snowfall, however, has increased in NWC, NEC, and ETP but decreased in SEC. The decrease in snow days is primarily due to the reduction of light snowfall events. The increase in the total amount is primarily explained by increases in heavy snowfalls, and the corresponding decrease is the result of decreases in light-to-heavy snowfalls. The RegCM4 ensemble, which can well simulate the observed snowfall climatology, projects that the snow days will be further reduced by the end of the twenty-first century relative to 1986–2005, primarily owing to the decline of light snowfall events. The total amount is projected to increase in NWC but decrease in the other three subregions. The increase in the total amount in NWC is attributed to increases in heavy and large snowfalls. Decreases in light snowfalls play a leading role in the decrease of the total amount in NEC. In ETP and SEC, the decrease in the total amount is the result of overall decreases in light-to-heavy snowfalls. The mechanism for such changes is an interesting topic to study in the future.

Funder

National Key Research and Development Program of China

the National Natural Science Foundation of China

the Climate Change Specific Fund of China

Publisher

American Meteorological Society

Subject

Atmospheric Science

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3