Identification of the Eurasian–North Pacific Multidecadal Oscillation and Its Relationship to the AMO

Author:

Lee Ming-Ying1,Hsu Huang-Hsiung2

Affiliation:

1. Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan

2. Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan

Abstract

Abstract A multidecadal geopotential height pattern in the upper troposphere of the extratropical Northern Hemisphere (NH) is identified in this study. This pattern is characterized by the nearly zonal symmetry of geopotential height and temperature between 35° and 65°N and the equivalent barotropic vertical structure with the largest amplitude in the upper troposphere. This pattern is named the Eurasian–Pacific multidecadal oscillation (EAPMO) to describe its multidecadal time scale and the largest amplitudes over Eurasia and the North Pacific. Although nearly extending over the entire extratropics, the EAPMO exhibits larger amplitudes over western Europe, East Asia, and the North Pacific with a zonal scale equivalent to zonal wavenumbers 4 and 5. The zonally asymmetric perturbation tends to amplify over the major mountain ranges in the region, suggesting a significant topographic influence. The EAPMO has fluctuated concurrently with the Atlantic multidecadal oscillation (AMO) at least since the beginning of the twentieth century. The numerical simulation results suggest that the EAPMO could be induced by the AMO-like sea surface temperature anomaly and strengthened regionally by topography, especially over the Asian highland region, although the amplitude was undersimulated. This study found that the multidecadal variability of the upper-tropospheric geopotential height in the extratropical NH is much more complicated than in the tropics and the Southern Hemisphere (SH). It takes both first (warming trend) and second (multidecadal) EOFs to explain the multidecadal variability in the extratropical NH, while only the first EOF, which exhibited a warming trend, is sufficient for the tropics and SH.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3