Surface Air Temperature Changes over the Twentieth and Twenty-First Centuries in China Simulated by 20 CMIP5 Models

Author:

Chen Liang1,Frauenfeld Oliver W.1

Affiliation:

1. Department of Geography, Texas A&M University, College Station, Texas

Abstract

Abstract Historical temperature variability over China during the twentieth century and projected changes under three emission scenarios for the twenty-first century are evaluated on the basis of a multimodel ensemble of 20 GCMs from phase 5 of the Coupled Model Intercomparison Project (CMIP5) and two observational datasets. Changes relative to phase 3 of the Coupled Model Intercomparison Project (CMIP3) are assessed, and the performance of individual GCMs is also quantified. Compared with observations, GCMs have substantial cold biases over the Tibetan Plateau, especially in the cold season. The timing and location of these biases also correspond to the greatest disagreement among the individual models, indicating GCMs’ limitations in reproducing climatic features in this complex terrain. The CMIP5 multimodel ensemble shows better agreement with observations than CMIP3 in terms of the temperature biases. Both CMIP3 and CMIP5 capture the climatic warming over the twentieth century. However, the magnitude of the annual mean temperature trends is underestimated. There is also limited agreement in the spatial and seasonal patterns of temperature trends over China. Based on six statistical measures, four individual models—the Max Planck Institute Earth System Model, low resolution (MPI-ESM-LR), Second Generation Canadian Earth System Model (CanESM2), Model for Interdisciplinary Research on Climate, Earth System Model (MIROC-ESM), and Community Climate System Model, version 4 (CCSM4)—best represent surface air temperature variability over China. The future temperature projections indicate that the representative concentration pathway (RCP) 8.5 and RCP 4.5 scenarios exhibit a gradual increase in annual temperature during the twenty-first century at a rate of 0.60° and 0.27°C (10 yr)−1, respectively. As the lowest-emission mitigation scenario, RCP 2.6 projects the lowest rate of temperature increase [0.10°C (10 yr)−1]. By the end of the twenty-first century, temperature is projected to increase by 1.7°–5.7°C, with larger warming over northern China and the Tibetan Plateau.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3