ENSO Contribution to Aerosol Variations over the Maritime Continent and the Western North Pacific during 2000–10

Author:

Wu Renguang1,Wen Zhiping2,He Zhuoqi3

Affiliation:

1. Institute of Space and Earth Information Science, and Department of Physics, Chinese University of Hong Kong, Hong Kong, China

2. Department of Atmospheric Sciences, and Center for Monsoon and Environment Research, Sun Yat-sen University, Guangzhou, China

3. Institute of Space and Earth Information Science, Chinese University of Hong Kong, Hong Kong, China

Abstract

Abstract This study investigates interannual aerosol variations over the Maritime Continent and the western North Pacific Ocean and aerosol–cloud–precipitation relationship during the period 2000–10 based on monthly-mean anomalies. The local aerosol–cloud–precipitation relationship displays strong regional characteristics. The aerosol variation is negatively correlated with cloud and precipitation variation over the Maritime Continent, but is positively correlated with cloud and precipitation variation over the region southeast of Japan. Over broad subtropical oceanic regions, the aerosol variation is positively correlated with cloud variation, but has a weak correlation with precipitation variation. Aerosol variations over the Maritime Continent and over the region southeast of Japan display a biennial feature with an obvious phase lag of about 8 months in the latter region during 2001–07. This biennial feature is attributed to the impacts of El Niño events on aerosol variations in these regions through large-scale circulation and precipitation changes. Around October of El Niño–developing years, the suppressed precipitation over the Maritime Continent favors an aerosol increase by reducing the wet deposition and setting up dry conditions favorable for fire burning. During early summer of El Niño–decaying years, suppressed heating around the Philippines as a delayed response to El Niño warming induces an anomalous lower-level cyclone over the region to the southeast of Japan through an atmospheric teleconnection, leading to an accumulation of aerosol and increase of precipitation. The aerosol–precipitation relationship shows an obvious change with time over eastern China, leading to an overall weak correlation.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3