Causes of Dimming and Brightening in China Inferred from Homogenized Daily Clear-Sky and All-Sky in situ Surface Solar Radiation Records (1958–2016)

Author:

Yang Su1,Wang Xiaolan L.2,Wild Martin3

Affiliation:

1. National Meteorological Information Centre, China Meteorological Administration, Beijing, China, and ETH Zurich, Institute for Atmospheric and Climate Science, Zurich, Switzerland

2. Climate Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario, Canada

3. ETH Zurich, Institute for Atmospheric and Climate Science, Zurich, Switzerland

Abstract

AbstractThis paper presents a study on long-term surface solar radiation (SSR) changes over China under clear- and all-sky conditions and analyzes the causes of the “dimming” and “brightening.” To eliminate the nonclimatic signals in the historical records, the daily SSR dataset was first homogenized using quantile-matching (QM) adjustment. The results reveal rapid dimming before 2000 not only under all-sky conditions, but also under clear-sky conditions, at a decline rate of −9.7 ± 0.4 W m−2 decade−1 (1958–99). This is slightly stronger than that under all-sky conditions at −7.4 ± 0.4 W m−2 decade−1, since the clear-sky dimming stopped 15 years later. A rapid “wettening” of about 40-Pa surface water vapor pressure (SWVP) from 1985 to 2000 was found over China. It contributed 2.2% to the SSR decline under clear-sky conditions during the whole dimming period (1958–99). Therefore, water vapor cannot be the main cause of the long-term dimming in China. After a stable decade (1999–2008), an intensive brightening appeared under the clear-sky conditions at a rate of 10.6 ± 2.0 W m−2 decade−1, whereas a much weaker brightening (−0.8 ± 3.1 W m−2 decade−1) has been observed under all-sky conditions between 2008 and 2016. The remarkable divergence between clear- and all-sky trends in recent decades indicates that the clouds played two opposite roles in the SSR changes during the past 30 years, by compensating for the declining SSR under the cloud-free conditions in 1985–99 and by counteracting the increasing SSR under cloud-free conditions in 2008–16. Aerosols remain as the main cause of dimming and brightening over China in the last 60 years, although the clouds counteract the effects of aerosols after 2000.

Funder

Young Scientists Fund

National Key Research and Development Program of China

National Innovation Project for Meteorological Science and Technology

China Scholarship Program

Swiss National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3