Impacts of Oceanic and Atmospheric Heat Transports on Sea Ice Extent

Author:

Aylmer Jake1,Ferreira David1,Feltham Daniel2

Affiliation:

1. Department of Meteorology, University of Reading, Reading, United Kingdom

2. Centre for Polar Observation and Modelling, Department of Meteorology, University of Reading, Reading, United Kingdom

Abstract

AbstractClimate-model biases in ocean heat transport (OHT) have been proposed as a major contributor to uncertainties in projections of sea ice extent. To better understand the impact of OHT on sea ice extent and compare it to that of atmospheric heat transport (AHT), an idealized, zonally averaged energy balance model (EBM) is developed. This is distinguished from previous EBM work by coupling a diffusive mixed layer OHT and a prescribed OHT contribution, with an atmospheric EBM and a reduced-complexity sea ice model. The ice-edge latitude is roughly linearly related to the convergence of each heat transport component, with different sensitivities depending on whether the ice cover is perennial or seasonal. In both regimes, Bjerknes compensation (BC) occurs such that the response of AHT partially offsets the impact of changing OHT. As a result, the effective sensitivity of ice-edge retreat to increasing OHT is only ~2/3 of the actual sensitivity (i.e., eliminating the BC effect). In the perennial regime, the sensitivity of the ice edge to OHT is about twice that to AHT, while in the seasonal regime they are similar. The ratio of sensitivities is, to leading order, determined by atmospheric longwave feedback parameters in the perennial regime. Here, there is no parameter range in which the ice edge is more sensitive to AHT than OHT.

Funder

Natural Environment Research Council

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3